This circuit optimises the circulation of heated  water from solar hot water panels to a storage cylinder. It achieves  this by controlling a 12V DC pump, which is switched on at a preset  temperature differential of 8°C and off at about 4°C. This method of  control has distinct advantages over some systems that run the pump  until the differential approaches 0°C. In such systems, the pump  typically runs whenever the sun shines. A small 10W solar panel charging  a 12V SLA battery is sufficient to run the controller. Most commercial  designs use 230VAC pumps, which of course don’t work when there is a  power outage or there is no AC power at the site.
 
  Temperature sensors TS1 & TS2 are positioned to  measure the highest and lowest water temperatures, with one at the  panel outlet and the other at the base of the storage cylinder. The  difference between the sensor outputs is amplified by op amp IC1d, which  is configured for a voltage gain of about 47. As the sensors produce  10mV/°C, a difference of 8°C will produce about 3.76V at the op amp’s  output (pin 14). The output from IC1d is fed into the non-inverting  input (pin 10) of a second op amp stage (IC1c), which is wired as a  voltage comparator. The op amp’s inverting input (pin 9) is tied to a  reference voltage, which can be varied by trimpot VR3. When the voltage  from IC1d exceeds the reference voltage, the output of the comparator  (pin 8) swings towards the positive rail.
A 10MW resistor feeds a small portion of the  output signal back to the non-inverting input, adding some hysteresis to  the circuit to ensure positive switching action. A third op amp stage  (IC1b) acts as a unity-gain buffer. When the comparator’s output goes  high, the buffer stage switches the Mosfet (Q1) on, which in turn  energises the pump motor. Mosfet Q1’s low drain-source on-state  resistance means that in most cases, it won’t need to be mounted on a  heatsink. The prototype uses a Davies Craig EBP 12V magnetic drive pump,  which draws about 1A when running and is suitable for low-pressure hot  water systems only (don’t use it for mains-pressure systems as it may  burst!). For mains-pressure systems, the author suggests the SID 10  range of brass-body magnetic drive pumps from Ivan Labs USA.
Circuit diagram:

Solar Hot Water Panel Differential Pump Controller Circuit Diagram
Setup:Each LM335 temperature sensor and its associated  trimpot is glued to a small copper strip using high-temperature epoxy.  It is then waterproofed with silicon sealant and encapsulated in  heatshrink tubing. Standard twin-core shielded microphone cable can be  used for the connection to the circuit board. Before sealing the two  units, adjust their trimpots to get 2.98V at 25°C [(ambient temperature x  .01) + 2.73V] between the "+" and "-" terminals. When both have been  adjusted, clamp them together and allow their temperatures to stabilise  for a few minutes. Next, measure the output voltage from the  differential amplifier (IC1d), which should be close to 0V. If not,  tweak one of the pots until it is.
Separate the two and warm the panel sensor  (TS1), monitoring the output of IC1d. You should see a marked increase  in voltage, remembering that an 8°C difference between the sensors  should give an output of about 3.76V. The pump switch-on point is set by  VR3 and can be adjusted over a practical range of about 4-10°C  differential (1.88-4.70V). Adjust VR3 to get about 3.8V on pin 9 of IC1c  as a starting point. If set too low and the panels are located far from  the cylinder, much of the heat will be lost in the copper connecting  pipes. On the other hand, if set too high and the weather is mostly  cloudy, then the pump will not switch on very often, as the panels will  not get hot enough. For best results, use copper pipes for the panel  plumbing and insulate them with tubes of closed-cell foam.
As the pipes cool down between pump  operations, small diameter pipes of 15mm are more efficient than larger  sizes as they contain less static water. In practice, the pump in the  author’s setup switches on for about 30 seconds every 4-5 minutes. As  the Davies pump shifts 13 litres/minute, it displaces the heated water  from a single panel in about 14 seconds. There is a thermal lag in the  sensor readings, so after the pump stops, the temperature difference  will keep decreasing for 40 seconds or so as the panel sensor cools down  and the cylinder sensor heats up.
Source by : Streampowers 
 




